Wissenszwinker: Gasmischer

Ein nächtlicher Alarm und rätselhafte Konzentrationsspitzen: Wir analysieren einen Kundenfall, bei dem undichte Ventile die Qualität des Schweissgases bedrohten. Erfahren Sie, wie die kontinuierliche Dichtemessung mit dem DGF-I1 diese „Schleichmengen“ entlarvte und wie Sie durch Prozessüberwachung teuren Ausschuss und Anlagenstillstand effektiv vermeiden.

Warum dieser Test?

In der Schweisstechnik (z. B. Argon/Wasserstoff) und bei Inertisierungsprozessen (z. B. Krypton/Luft) entscheiden oft unsichtbare Faktoren über die Qualität. Stimmt das Mischverhältnis nicht, drohen Schweissfehler oder Dämmverluste. Wir zeigen, wie die Dichte als „physikalischer Fingerabdruck“ dient, um die Konzentration binärer Gasgemische präzise zu überwachen – ohne aufwendige Laboranalysen – und somit zu einer verbesserten Prozessstabilität beiträgt.

Was ist ein Wissenszwinker?

Kennen Sie das Bedürfnis manchmal schnell etwas zu messen, zu zeichnen oder zu basteln? Dabei zählt die Geschwindigkeit bis zum Resultat mehr als die perfekte (wissenschaftliche) Herangehensweise. Aus diesem Grund haben wir bei uns einen Wissens-Zwinker eingeführt. Sozusagen Wissenschaft mit einem Augenzwinkern. Dabei wollen wir nicht wissenschaftlich etwas beweisen, sondern schnell etwas pragmatisch aufzeigen. Bei Interesse vertiefen wir diese Ergebnisse gerne mit Ihnen und Ihrem Projekt.

Welche Gase wurden verwendet?

  • Ar (Argon)
  • H2 (Wasserstoff)

Argon (Ar)

~0.09 kg/m³

bei 0 °C, 1.01325 bar abs

Wasserstoff (H2)

~1.78 kg/m³

bei 0 °C, 1.01325 bar abs

Dichtemessung

Die Messung der Dichte wurde mit dem Gasdichtesensor DGF-I1 durchgeführt. Dafür wurde der bestehende Kalibrierprozess angepasst und um die Messung von reinem SF6 erweitert. Die bei variierten Druck- und Temperaturbedingungen aufgenommenen Messwerte dienten anschliessend zur Optimierung des bestehenden physikalischen Modells zur Konzentrationsmessung. Über dieses Modell wird sichergestellt, dass zukünftig keine Echtgas-Kalibrationen mit SF6 mehr erforderlich sind, sodass jeder Sensor nachträglich und unkompliziert für diese Anwendung konfiguriert werden kann.

Der TrueDyne-Sensor

Der DGF-I1 Dichtesensor ist mit einem Durchmesser von 33.5 mm und einer Länge von 63 mm sehr kompakt gebaut und findet auch auf kleinstem Raum Platz. Er wird mit dem integrierten Anschluss direkt in die Gasleitung oder den zu isolierender Schaltschrank geschraubt, ein Filter schützt vor Verschmutzung. Die Messwerte werden über eine RS485-Schnittstelle an das übergeordnete System übertragen. Die niedrige Ansprechzeit sowie Leistungsaufnahme des Sensors machen eine kontinuierliche Überwachung der gewünschten SF6-Konzentration direkt im Prozess möglich – die Messung muss nicht unterbrochen werden.  
Dichtesensor DGF-I1 - TrueDyne - Ansicht links
DGF-I1 Dichemessgerät für Gase
Max. Messabweichung:

Dichte: <0,1 kg/m³ Temperatur: <0,8 °C Druck: <0,04 bar Mit Feldabgleich Dichte <0,05 kg/m³

Wiederholbarkeit:

Dichte: <0,015 kg/m³ Temperatur: <0,06 °C Druck: <0,005 bar

Zulässiger Dichtemessbereich:

0,2 … 19 kg/m³  

Zulässiger Druckbereich:

Max. Messbereich: 1…10 bar (absolut) Gasgemische mit Argon (Ar) nur bis max 9 bar (abs) verwenden. Berstdruck 30 bar

Der Prüfaufbau

Der Prüfaufbau dient der präzisen Erzeugung und kontinuierlichen Qualitätsüberwachung binärer Gasgemische. Die Versorgung der Anlage erfolgt über zwei separate Gasquellen (Gasflasche A und Gasflasche B). Die Dosierung der beiden Einzelgase wird über zwei Massendurchflussregler (Mass Flow Controller, MFC) gesteuert. Diese regeln das Durchflussverhältnis exakt so, dass die gewünschte Zielkonzentration erreicht wird. Die beiden Gasströme werden anschließend in einen zentralen Pufferbehälter geleitet. Dieser Behälter erfüllt zwei Funktionen: Er dient zur vollständigen Homogenisierung des Gasgemischs und gleicht Druckschwankungen sowie Verbrauchsspitzen (Pufferung) aus. Am Auslass des Pufferbehälters befindet sich die Messstrecke. Das fertige Gasgemisch wird direkt durch den DGF-Sensor geleitet. Dieser überwacht „Inline“ die Konzentration und Qualität des Gemischs, unmittelbar bevor es dem nachgeschalteten Verbraucher (Prozess) zugeführt wird. Dies stellt sicher, dass nur spezifikationsgerechtes Gas in den Prozess gelangt.  
Dichtesensor DGF-I1 - TrueDyne - Ansicht links
Schematischer Aufbau einer Gasmischanlage mit integrierter DGF-Sensorüberwachung

Ergebnisse

Abbildung 1: Konzentrationsverlauf des Schweissgasgemischs

Die obenstehende Grafik zeigt beispielhaft das reale Messprotokoll der Wasserstoffkonzentration in einer Schweissgas-Mischanlage über den Verlauf von drei Tagen (Dienstag bis Donnerstag). Der Zielwert für das Schweissgasgemisch lag bei 5% H2. Die orangen Grenzlinien bei 4% und 6% und bilden die maximal zugelassene Toleranz von ±1% des Gasgemischs dar.

Auf den ersten Blick fallen die periodischen Ausreisser nach oben auf, die den Grenzwert von 6% durchbrechen. Genau diese Spitzen lösten beim Kunden nachts, ausserhalb der regulären Produktionszeiten, einen Alarm aus.

Die Diagnose dank Dichtemessung:

Die Analyse der vom DGF-I1 aufgezeichneten Daten brachte das Problem schnell ans Licht:

  • Das Phänomen: Der Anstieg der H2-Konzentration korrelierte exakt mit den Stillstands-Zeiten der Anlage.
  • Die Ursache: Eine Überprüfung der Gasmischstrecke ergab, dass das Ventil des Wasserstoff-Massendurchflussreglers (MFC) nicht mehr vollständig schloss. Sogenannte „Schleichmengen“ strömten kontinuierlich in den Pufferbehälter.
  • Der Effekt: Während der laufenden Produktion war der Gasverbrauch hoch genug, um diese geringen Leckagen zu maskieren – das Gemisch blieb im Soll. Sobald die Abnahme jedoch stoppte, reicherte sich der leichte Wasserstoff im Behälter an und die Konzentration stieg kontinuierlich und reproduzierbar über das zulässige Limit.

Fazit

Mehrwert für den Kunden:

Ohne die kontinuierliche Überwachung durch den DGF-I1 wäre dieser Defekt bis zur geplanten Wartung der MFCs unbemerkt geblieben, da die Anlage im regulären Betrieb scheinbar korrekt lief. Zu hohe Wasserstoffanteile hätten jedoch schlimmstenfalls zu Qualitätsproblemen oder Porosität in den Schweissnähten geführt.

Dank der klaren Datenlage konnte sofort reagiert werden: Bis zum Austausch des defekten MFCs kann vor Produktionsbeginn kurz Gas aus dem Puffer abgelassen werden, um den korrekten Mischwert wiederherzustellen. So ist ein Produktionsstillstand bis zum Wechsel des defekten MFCs verhindert und die Schweissqualität durchgehend sichergestellt.

 

Welche Sensoren wurden verwendet?

Dichtesensor DGF-I1 - TrueDyne - Ansicht links

Dichtesensor DGF-I1 für Gase

  • Klicken Sie hier um mehr über unseren Sensor zu erfahren.

Sensoren, die Sie interessieren könnten

Applikationen, die Sie interessieren könnten

Weitere Wissens-Zwinker, die Sie interessieren könnten

Wissenszwinker: Mineralgehalt von Wasser

Wissenszwinker: Mineralgehalt von Wasser

Wissenszwinker: Mineralgehalt von Wasser Der Mineralgehalt von Wasser spielt eine zentrale Rolle – sowohl für die Qualität von Getränken als auch für industrielle Prozesse. Während er in der Industrie oft Probleme wie Kalk oder Korrosion verursacht, ist er bei...

mehr lesen
Wissens-Zwinker: Konzentrationsmessung Protein

Wissens-Zwinker: Konzentrationsmessung Protein

Wissens-Zwinker: Konzentrationsmessung Protein Dieser Wissenszwinker widmet sich der Konzentrationsmessung von Protein in Wasser über die physikalischen Größen Dichte und Viskosität. Als Beispiel wurde kommerziell erhältliches Molkenprotein verwendet, dessen...

mehr lesen