Winkle of Knowledge: Concentration measurement protein
This knowledge wink is dedicated to measuring the concentration of protein in water using the physical parameters of density and viscosity. Commercially available whey protein was used as an example, the concentration of which we were able to determine in the range of ±0.07 %w using a VLO-M2. Our shake is now perfect, and we are also happy to help you optimize your protein solutions!
Why this test?
Have you ever wondered why the gains don’t materialise despite hard training in the gym? Have you ever suspected the protein shake? Who knows how much protein is really in there, especially if you don’t meticulously weigh everything… With a VLO-M2 density and viscosity sensor, we set out in search of answers. In the spirit of ‘Dry January’, this wink of knowledge is not dedicated to alcoholic drinks for once, but to whey protein.
But quite apart from the fun factor involved in mixing, measuring and drinking protein shakes: Aqueous protein solutions are not only used in the production of whey products, e.g. for the fitness industry, but are also important pillars of the modern biotech and pharmaceutical industries. Whey protein is a cost-effective way to enter the diverse world of proteins.
What is a Wink of Knowledge?
Do you need to quickly measure, draw or do/build something? The speed with which the result may be achieved counts more than the perfect (scientific) approach. For this reason, we have introduced the Wink of Knowledge. Science in the wink of an eye, so to speak. We don’t want to prove anything scientifically. We simply want to quickly demonstrate something pragmatically. If you are interested, we would be happy to discuss these results in more detail with you and your project.
Results
Mixtures with different concentrations of commercially available whey protein isolate in water were prepared using a balance. The concentrations were chosen to cover the range close to the manufacturer’s recommendation. The recommendation is to dissolve 25g of powder (which corresponds to approx. 3 level tablespoons) in 300 ml of water. Assuming a density of approx. 1kg/l for water, this corresponds to a concentration of approx. 8.3 %w. Our mixtures ranged accordingly from 4.5 %w to 12.5 %w. The density and viscosity of these mixtures were measured with a VLO-M2 at ambient conditions (approx. 24°C, atmospheric pressure) and yielded the following concentration dependencies (blue dots):
Which sensors were used?
viscosity sensor VLO-M2
- Click here to learn more about our sensor
Fazit
Sensors that might interest you
Gases
Viscosity
Applications that might interest you
Monitoring fuel concentrations
From volume (l) to mass (kg)
Monitoring of welding gas mixtures
Monitoring of gas mixtures used in food packaging
More Winks of Knowledge that might interest you
Wink of Knowledge: Improved methanol/water concentration model for fuel cells
A new concentration model for methanol / water mixtures is shown. The model covers a wide range of process conditions: At temperatures of 0-80°C, concentrations of 0-100% can be calculated from the density with an accuracy of ± 0.2%. The direct methanol fuel cell (DMFC) is an important application for this as the power source of the future.
Wink of Knowledge: smart mass flow controller
Discover the future of precise gas flow control with the innovative Smart Mass Flow Controller from TrueDyne Sensors AG. In cooperation with IST AG, we have developed a pioneering device capable of measuring density, temperature, pressure and mass flow – all in one sensor. Designed for flexibility and accuracy, this controller automatically adapts to different pure gases and binary gas mixtures, ensuring optimal performance. Learn more about this groundbreaking solution at TrueDyne Sensors AG.
Wink of Knowledge: Monitoring the beer fermentation process via density and CO2 formation
Density and CO2 formation were measured during the fermentation process. The measurements of the wort’s density, degree of fermentation and alcohol content agree very well with expectations and verification measurements with laboratory equipment. The presented solution enables automatable, continuous monitoring of the process as well as determination of …
Wink of Knowledge: Measurement of the hydrogen peroxide concentration in water with <0.025% measurement uncertainty
Density measurements of hydrogen peroxide in water with the VLO-M2 were correct within <0.05 kg/m3 using control measurements from a laboratory analyser. The measured deviations correspond to a measurement uncertainty of <0.025% (250ppm) for the concentration determination.
Article: In-line measurements of the physical and thermodynamic properties of single and multicomponent liquids
Microfluidic devices are becoming increasingly important in various fields of pharmacy, flow chemistry and healthcare. In the embedded microchannel, the flow rates, the dynamic viscosity of the transported liquids and the fluid dynamic properties play an important role. Various functional auxiliary components of microfluidic devices such as flow restrictors, valves and flow meters need to be characterised with liquids used in several microfluidic applications.
Wink of Knowledge: Thermal flow measurement and correction by means of gas detection
Flow sensors based on the calorimetric measuring principle typically have to be adjusted to a specific medium. This wink of knowledge shows that a real-time density measurement is highly suitable for correcting the measured flow value for pure gases as well as binary gas mixtures.