
Datenblatt I Technische Beschreibung und Installationsanleitung

Dokumentnummer: DB-KU-100296-A Erstellungsdatum: März 2025 Ab Firmware Version: V00.06.00 Ab Seriennummer xxx1956

DML03 Version:

Dichtesensor DLO-C3

Inhalt

Hinweise zum Datenblatt	
Sicherheitshinweise	
Produktbeschreibung	,
Installation, Inbetriebnahme und Deinstallation	
Reinigung und Reparatur	
Entsorgung	
Produktspezifikation	
Modbus	1
Downloadbereich	1
Webseite	1

Hinweise zum Datenblatt

Verwendung und Aufbewahrung

- Dieses Datenblatt ist fester Bestandteil des Dichtesensors.
- Das Datenblatt in unmittelbarer N\u00e4he des Verwendungsorts aufbewahren.
- Bei einer Weitergabe an Dritte, Datenblatt oder relevante Inhalte an diese weitergeben.
- Das Datenblatt sorgfältig lesen.
- Änderungen sind vorbehalten.

Funktion

Das Datenblatt liefert Informationen zur sicheren Verwendung und Installation des Dichtesensors.

Symbolverwendung

Die folgenden Symbole werden im Datenblatt verwendet, um auf gefährliche Situationen hinzuweisen und Handlungsanweisungen zu kennzeichnen:

Symbol	Beschreibung	
A WARNUNG	Führt bei Nichtvermeidung zu Tod oder zu schwerer Körperverletzung.	
HINWEIS	Informationen zu Sachverhalten, die keine Körperverletzung nach sich zie- hen.	
>	Einschrittige Handlungsanweisung	
1. / 2. / 3.	Mehrschrittige Handlungsanweisung	

Sicherheitshinweise

Bestimmungsgemässe Verwendung

- Je nach bestellter Ausführung kann das Messgerät auch explosionsgefährliche und entzündliche Messstoffe messen.
- Messgeräte zum Einsatz im explosionsgefährdeten Bereich sind auf dem Typenschild speziell gekennzeichnet.
- Der Dichtesensor ist ausschliesslich für die Dichtemessung von Fluiden einzusetzen. Es dürfen nur zulässige Messstoffe verwendet werden.
- Anhand des Typenschildes überprüfen, ob bestelltes Messgerät für vorgesehenen Gebrauch im zulassungsrelevanten Bereich eingesetzt werden kann (z.B. Explosionsschutz).

 Ein Nichtbeachten des Anwendungsbereichs kann die Sicherheit beeinträchtigen. Der Hersteller haftet nicht für Schäden, die aus unsachgemässer Verwendung entstehen.

Personalqualifikation

Der Dichtesensor darf nur von Fachpersonal installiert werden.

Betriebssicherheit

- Der Betreiber ist für einen störungsfreien Betrieb des Dichtesensors verantwortlich.
- Den Dichtesensor nur in einem technisch einwandfreien und betriebssicheren Zustand betreiben.
- Bei erhöhter Messstofftemperatur einen Berührungsschutz sicherstellen, um Verbrennungen zu vermeiden.
- Eigenmächtige Umbauten oder Reparaturen am Dichtesensor sind nicht zulässig und können zu unvorhersehbaren Gefahren führen.

Produktsicherheit

 Der Dichtesensor ist konform mit den Richtlinien, die in der EU-Konformitätserklärung aufgelistet sind. Mit der Anbringung des CE-Zeichens bestätigt die TrueDyne Sensors AG diesen Sachverhalt.

Hinweise zum Datenblatt

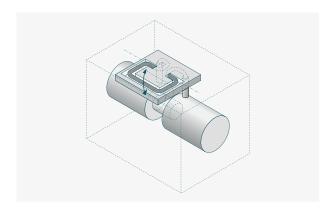
Produktbeschreibung

Überblick

Der Dichtesensor wurde konzipiert, um die Dichte von Fluiden zu messen. Dies geschieht mit einem mikroelektromechanischen System (MEMS) mit omegaförmigem Mikrokanal (Omega-Chip), der in einen internen Bypass eingebaut ist.

Fliesst Messstoff durch den Dichtesensor, wird durch die Bypassanordnung ein Druckgefälle über den Mikrokanal erzeugt, wodurch der Messstoff zum Omega-Chip gelangt. Der Messstoff beeinflusst die physikalischen Eigenschaften des angeregten Sensors (Resonanzfrequenz und Güte), diese werden digitalisiert und im Microcontroller ausgewertet. Die Messwerte können über die serielle Schnittstelle ausgelesen werden.

So sind Dichtemessungen im Bereich $0...1600~kg/m^3$ bei einer Durchflussmenge von 0...10~l/h realisierbar.


Weitere Möglichkeiten sind verfügbar bezüglich einem erweiterten Dichtebereich, Viskositätsmessung und Dichtemessung von Gasen. In den ensprechenden Dokumentationen sind die Spezifikationen zu finden.

Omega-Chip

Der Omega-Chip, ein vibronisches Mikrosystem, ist das Herz des Messsystems und dient der Sensorsignalgenerierung im Gesamtsystem. Wesentlicher Bestandteil dieses Mikrosystems ist ein Siliziumrohr (Mikrokanal), das elektrostatisch in einer Vakuumatmosphäre in Schwingung versetzt wird. Zur Kompensation von Temperatureffekten ist ein Platinwiderstand integriert, der eine lokale Echtzeittemperaturerfassung zulässt. Der Omega-Chip besteht im Wesentlichen aus kristallinem Silizium und Glas.

Dichtemessung

Zur Dichtemessung verwendet der Dichtesensor den Omega-Chip. Der befüllte Mikrokanal wird dazu in resonante Schwingung versetzt und analysiert.

Messprinzip (Omega-Chip)

Die resultierende Eigenfrequenz des Mikrokanals hängt von der Masse und damit von der Dichte des Messstoffs im Mikrokanal ab: Je grösser die Messstoffdichte, desto kleiner ist die Eigenfrequenz. Die Eigenfrequenz ist somit eine Funktion der Messstoffdichte.

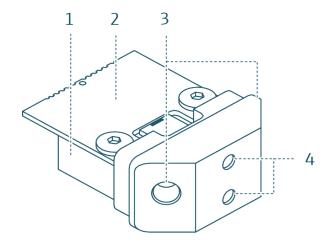
$$f \propto \sqrt{\frac{\text{E} \cdot \text{I}}{\rho_{\text{Tube}} \cdot \text{A}_{\text{Tube}} + \rho_{\text{Fluid}} \cdot \text{A}_{\text{Fluid}}}}$$

f = Eigenfrequenz, $E \cdot I$ = Rohrsteifigkeit, ρ_{Tube} = Rohrdichte, A_{Tube} = Rohrquerschnitt, ρ_{Fluid} = Messstoffdichte, A_{Fluid} = Messstoffquerschnitt

Anwendungsmöglichkeiten

Der Dichtesensor kann für direkte und indirekte Dichtemessungen verwendet werden. Während mit der direkten Dichtemessung eine Produkteigenschaft bzw. -qualität ermittelt werden kann, ermöglicht eine indirekte Dichtemessung anhand von Tabellen und Berechnungsalgorithmen zum Beispiel die Konzentrationsbestimmung von Fluidgemischen.

Der Dichtesensor kann unter anderem in folgenden Applikationen eingesetzt werden:


 Ergänzung von volumetrischer Durchflussmessung in Blenden, Turbinen oder Verdrängungsgeräten, um eine Massenmessung zu ermöglichen. Der Dichtesensor berücksichtigt dabei Temperaturänderungen und kann diese unmittelbar kompensieren. Es besteht zudem die Möglichkeit, den extern gemessenen Druck in den Dichtesensor zu schreiben (siehe Sonderdokumentation für Gasmessung).

Produktbeschreibung

 Überwachung und Kontrolle der Qualität von Kraftstoffgemischen wie E10 oder Biodiesel.

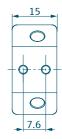
Produktaufbau

Produktaufbau Dichtesensor DLO-C3

- 1 Dichtesensor DLO-C3
- 2 Montagelöcher für mechanische Befestigung (6 x M3-Gewindebohrungen)
- 3 Fluidische Schnittstelle (2 x M5-Gewindebohrungen)
- 4 Bestückte Leiterplatte inkl. Stecker Buchsen (Rückseite, siehe Seite 10)

Lieferumfang

Dichtesensor (inkl. Transportsicherungen)


Produktidentifikation

Die Identifizierung des Dichtesensors erfolgt über eine fortlaufende, elfstellige Seriennummer. Diese ist aussen auf dem Gehäuse angebracht und kann zudem über Modbus eingesehen werden.

Installation, Inbetriebnahme und Deinstallation

Dichtesensor mechanisch befestigen

► Dichtesensor mittels M3-Schrauben über vorgesehene Montagelöcher (4 mm Tiefe) fixieren. Maximales Anzugsmoment 30 cNm (Typisch 15...20 cNm)

Dimensionen in mm für die mechanische Befestigung

Dichtesensor fluidisch anschliessen

- Bei einer Durchflussmenge >10 I/h wird der Einbau in eine Bypassleitung empfohlen um die Durchflussmenge durch den Dichtesensor auf <10 I/h zu begrenzen.
- Die Bypassleitung kann zu einem Auffangbehälter oder zurück zur Hauptleitung geführt werden.

A WARNUNG

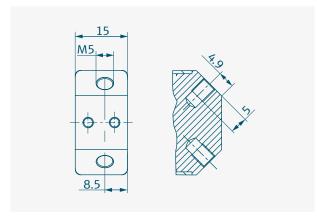
Verletzungsgefahr durch gefährliche Prozessbedingungen und Rohrbruch

- ► Rohrleitung vor Einbau des Dichtesensors entleeren und drucklos machen.
- ► Hohe Temperaturen berücksichtigen.
- ► Gegebenenfalls Dichtesensor mechanisch befestigen.

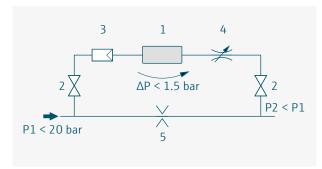
HINWEIS

Verstopfung des Mikrokanals

 Gegebenenfalls Filter vor Dichtesensor einbauen, um Verstopfung des Mikrokanals zu vermeiden.


HINWEIS

Verzögertes Messsignal bei Einbau in Bypass


- ► Zeitverzögerung, zum Beispiel bei Prozessregelung, beachten.
- 1. Sämtliche Reste der Transportverpackung entfernen.
- **2.** Transportsicherungen an fluidischen Anschlüssen entfernen.

3. Dichtesensor an fluidischen Anschlüssen mit M5-Verbindungsstücken (Gewindetiefe 5 mm) in Rohrleitung einbauen, wobei Fluss- und Einbaurichtung nicht relevant sind. Zudem Anweisungen der Bedienungsanleitung des verwendeten Verbindungsstücks beachten.

Dimensionen in mm für die fluidische Installation

Installationsbeispiel: 1 = Dichtesensor; 2 = Ventil; 3 = Filter; 4 = Drossel; 5 = Blende

Dichtesensor elektrisch anschliessen

WARNUNG

Tod oder schwere Verletzungen durch falschen Anschluss

- ► Elektrische Anschlussarbeiten nur von entsprechend ausgebildetem Fachpersonal ausführen lassen.
- ► National gültige Installationsvorschriften beachten.
- Örtliche Arbeitsschutzvorschriften einhalten.

MARNUNG

Keine strombegrenzende Sicherung

► Überstromschutz (I_{max} = 500 mA) durch externe Beschaltung sicherstellen.

A WARNUNG

Einsatz in explosionsgefährdeten Bereichen

Der Dichtesensor DLO-C3 besitzt keine Zulassung für die Verwendung in explosionsgefährdeten Bereichen.

- ► Bei Betreiben in explosionsgefährdeten Bereichen Explosionsschutz sicherstellen.
- ▶ Dichtesensor an übergeordnetes System anschliessen. Dabei Kabelbelegung beachten, siehe "Kabelbelegung" auf Seite 11.

HINWEIS

UART TTL 3.3 V Punkt-zu-Punkt Verbindung

▶ Die serielle Schnittstelle ist angelehnt an die "Modbus over serial line" Spezifikation.

Dichtesensor in System integrieren

Der Dichtesensor sendet die Messdaten über die Datenleitung im Modbus RTU Übertragungsmodus an das Auslesesystem. Allgemeine Einstellungen der seriellen Modbus RTU Schnittstelle:

HINWEIS

- ► Modbus RTU-Protokoll implementiert nach der Spezifikation V1.1b3.
- ► Modbus-Register beziehen sich auf den Startwert 0.
- ▶ Beim Sensor ist die typische Antwortzeit 10...20 ms.
- ► Weitere Modbus-Informationen finden Sie im Abschnitt Modbus.

HINWEIS

Der Dichtesensor beinhaltet keinen Drucksensor. Es besteht jedoch die Möglichkeit, den extern gemessenen Druck in den Dichtesensor zu schreiben (siehe Sonderdokumentation für Gasmessung).

Dichtesensor einschalten

► Spannungsversorgung einschalten. Nach Einschalten der Spannungsversorgung startet der Dichtesensor nach einer Initialisierungsroutine automatisch.

Dichtesensor ausbauen

MARNUNG

Gefährdung von Personal und Umwelt durch gesundheitsgefährdende Messstoffe

- ► Sicherstellen, dass beim Lösen der fluidischen Verbindung keine gesundheits- oder umweltgefährdenden Messstoffe austreten können.
- ► Sicherstellen, dass beim Lösen der mechanischen Befestigungen durch Lageveränderung keine Reste von Gefahrenstoffen aus Dichtesensor austreten können.
- **1.** Kabelverbindungen der elektrischen Anschlüsse vom Dichtesensor trennen.
- 2. Fluidische Verbindungen lösen.
- **3.** Mechanische Befestigungen lösen.

Reinigung und Reparatur

Reinigung des Gehäuses durchführen

HINWEIS

Beschädigung des Gehäuses durch Reinigungsmittel möglich

- ► Keinen Hochdruckdampf verwenden.
- ► Nur zulässige Reinigungsmittel verwenden:
 - Milde Seifenlösungen
 - Methyl- oder Isopropylalkohol
 - Wasser
 - Somat Intensiv-Maschinenreiniger

Reinigung des Mikrokanals durchführen

HINWEIS

Beschädigung des Mikrokanals möglich

- ► Nur zulässige Reinigungsmittel verwenden.
- 1. Mit zulässigem Reinigungsmittel durchspülen:
 - Isopropanol (IPA), Ethanol, Waschbenzin (z.B. Benzin 80...110), Aceton, Hexan und Somat Intensiv-Maschinenreiniger
- **2.** Anschliessend mit trockener Luft durchblasen, bis sich kein Reinigungsmittel mehr im Mikrokanal befindet.
- **3.** Dichtesensor mit Flüssigkeit befüllen, deren Dichtewert bekannt ist. Abweichungen vom Solldichtewert, die grösser als die spezifizierte max. Messabweichung sind, deuten auf Rückstände im Mikrokanal hin.

Entsorgung

Dichtesensor entsorgen

WARNUNG

Gefährdung von Personal und Umwelt durch gesundheitsgefährdende Messstoffe

- ► Sicherstellen, dass Dichtesensor und alle Hohlräume frei von gesundheits- oder umweltgefährdenden Messstoffresten sind.
- ▶ Dichtesensorkomponenten der Wiederverwertung zuführen. Dabei die national gültigen Vorschriften beachten.

Produktspezifikation

Allgemein

Messgrösse

Dichte und daraus abgeleitete Grössen (z.B. Normdichte, Konzentration, etc.)

Typische Medien

HINWEIS

Beschädigung des Mikrokanals möglich.

► Kein Helium oder starke Basen verwenden.

Partikelfreie (<30 µm) Medien z.B:

- Benzin, Diesel, Kerosin
- OME (synthetische Stoffe)
- Öle und Schmierstoffe
- Wasserbasierte Medien
- Methanol, Ethanol, Isopropanol
- LPG*
- AdBlue®*
- Glykol-Mischungen*

Konzentrationspakete:

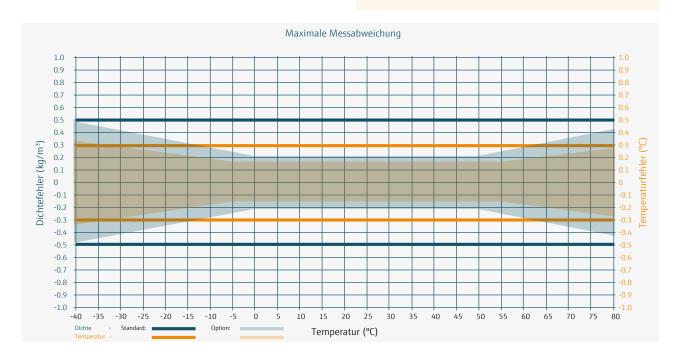
- Diverse Zucker in Wasser
- Invertzucker in Wasser
- High Fructose corn sirup
- Methanol in Wasser
- Ethanol in Wasser
- Kochsalz in Wasser
- Minerale in Wasser
- Wasserstoffperoxid in Wasser
- Ethylenglycol in Wasser
- Butan in Propan

Reinigung und Reparatur

 Benutzerspezifische Konzentrationspakete auf Anfrage

Weitere Medien können ggf. nach Einzelabklärung verwendet werden. *Optional

Für Informationen zur Gasdichtemessung siehe Sonderdokumentation: Dichtesensor für Gase.


Messperformance

Max. Messabweichung ■ Dichte: ±0,5 kg/m³ für Flüssigkeiten. (Für Gase siehe Sonderdokumentation für Gase.)

- Temperatur: ±0,3 °C

Option:

- Dichte: $\pm 0.2 \text{ kg/m}^3$ bzw. $\pm [0.0075 \times abs(T-25 ^{\circ}C)]$ kg/m³ wenn der Wert $>0.2 \text{ kg/m}^3 \text{ ist}$
- Temperatur: ±0,15°C bzw. $\pm [0,005 \times abs(T-25^{\circ}C)]^{\circ}C$ wenn der Wert >0.15°C ist

Maximale Messabweichung: DIchte und Temperatur

HINWEIS

Druckabhängige Dichtemessgenauigkeit

Diese Angaben sind in Bezug auf Messungen von Flüssigkeiten. Für Gasmessungen siehe Sonderdoku. Die Messwerte sind standardmässig auf 1.01325 bar (abs) bezogen. Eine Parametrierung auf einen anderen Druck per Bestellung oder durch eigene Parametrierung ist ebenfalls möglich. Bei höherem Druck zeigt der Dichtesensor eine zu geringe Dichte an. Die Dichteabweichung Δρ beträgt bei Druckänderung Δp :

$$\Delta \rho = (0.07 \pm 0.02) \frac{\text{kg}}{\text{m}^3 \cdot \text{bar}} \cdot \Delta \rho$$

- Druckabhängige Dichtemessgenauigkeit beachten.
- ► Gegebenfalls Dichtemesswert aufgrund von Druckeinfluss korrigieren:

$$\rho_{\text{Fluid}} = \rho_{\text{mess}} + \Delta \rho$$

Dabei ist ρ_{Fluid} die tatsächliche Dichte bei Prozessdruck und ρ_{mess} die vom Dichtesensor gemessene Dichte.

► Bestelloption: Parametrierung auf gewünschten Druck (1...20 bar (abs)).

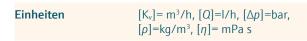
Wiederholbarkeit

• Dichte: $\pm 0.25 \text{ kg/m}^3$

■ Temperatur: ±0,05 °C

Temperaturbedingungen

Zulässige Mediums--40...+60 °C temperatur


Zulässige Umge--40...+60 °C bungstemperatur

Zulässige Lagerungs- -40...+60 °C temperatur

Einsatzbereich

01600 kg/m³
0,15 mPa s (Option 0,150 mPa s)
020 bar (abs) Berstdruck 80 bar (abs)
Max. 30 μm
010 l/h 01 l/min bei Gasen
HINWEIS Zulässig bedeutet, die Messgenauigkeit des Sensors befindet sich in den angegebenen Spezifikationen.
Vibrationen (<20 kHz) haben aufgrund der hohen Arbeitsfrequenz des Mikrokanals keinen Einfluss auf die Messgenauigkeit.
Ein- und Auslaufstrecken haben keinen Einfluss auf die Mess- genauigkeit.
HINWEIS Zur Sicherstellung eines einwandfreien Betriebes, darf die Durchflussmenge (Q) 10 I/h nicht überschritten werden. Bei Gasmessungen liegt die Obergrenze bei 1 I/min.

Durchfluss- / Druckverlustbedingungen

Durchflussfaktor versus Reynoldszahl (K_v (Re) = [1.28ln (Re) + 1.60] ± 10%)

Bestimmung vom Durchflussfaktor (K _v ·1000 l/m³)	Der Durchflussfaktor kann mit Hilfe der Reynoldszahl (<i>Re</i>) über die Abb. Durchfluss- / Druckverlustbedingungen abgelesen werden.
Bestimmung von Re über Q , ρ und η	$Re \cong \frac{Q \cdot \rho}{2 \cdot \eta}$
Bestimmung von Q über Δp	$Q = K_v \cdot 1000 \text{ l/m}^3 \sqrt{\frac{\Delta \rho}{1 \text{ bar}} \cdot \frac{1000 \text{ kg/m}^3}{\rho}}$

Bestimmung von Δ <i>p</i> über <i>Q</i>	$\Delta p = \left(\frac{Q}{K_{v} \cdot 1000 \text{ l/m}^{3}}\right)^{2} \cdot \frac{\rho}{1000}$
Berechnung	Falls einer der benötigten Faktoren wie zum Beispiel <i>Q</i> nicht zur Verfügung steht, werden mehrere lterations-Schritte benötigt.
Ansprechzeit	 Die Erfassung der Dichte erfolgt mit einer Messrate von min. 30 Hz. Durch interne Verarbeitung und Filterung beträgt die maximale Gruppenlaufzeit 1 s. Die Erfassung der Temperatur erfolgt mit einer Messrate von 2 Hz. Durch interne Verarbeitung und Filterung beträgt die typische Gruppenlaufzeit 2.5 s

Umgebungsbedingungen

Klimaklasse	In Abklärung
Elektromagnetische Verträglichkeit	Vorbereitet für: EMV2014/30/EU (EN 61326-1)
Schwingungs- und Stossfestigkeit	In Abklärung
Schuztart	Keine Schutzart definiert.

Werkstoffe


Medienberührend BOROFLOAT® 33 Glas Silizium Epoxidharz Rostfreier Stahl: - 1.4542 (AISI/SUS 630) Alternativ zu Rostfreiem Stahl: - 2.4605 (Alloy 59)

Dimensionen

Abmessungen	30 x 36 x 15 mm ³
Gewicht	<50 g
Abmessungen Messkanal	160 x 200 μm (500 nl)

Fluidische Schnittstelle

Fluidische Schnittstellen	2 x M5 Gewindebohrungen
	im 45°-Winkel zur Seiten- und Stirnfläche

Elektrische Schnittstelle

Elektrische Schnittstelle					
Pinbelegung Buchse 4 Pol					
Herstellerbezeichnung:		Pin Belegung			
JST BM04B-ACHSS	1	V+	Versorgungsspan- nung		
	2	GND	Signalmasse		
	3	RX	UART Receive		
	4	TX	UART Transmit		
Pinbelegung Buchse 8 Pol	000				
Herstellerbezeichnung:					
Herstellerbezeichnung:	Pir	n Beleg	ung		
Herstellerbezeichnung: Samtec	Pir	n Beleg	ung Reserviert		
_		Neleg			
Samtec	1		Reserviert Versorgungsspan-		
Samtec	1 2	V+	Reserviert Versorgungsspan- nung		
Samtec	1 2 3	V+ I2C	Reserviert Versorgungsspannung SCL		
Samtec	1 2 3 4	V+ I2C GND	Reserviert Versorgungsspannung SCL Signalmasse		
Samtec	1 2 3 4 5	V+ I2C GND I2C	Reserviert Versorgungsspannung SCL Signalmasse SDA		

Bauform, Dimensionen in mm

Pegelführung

Die UART-Schnittstelle ist direkt an die internen Microcontroller Pins geführt. Es handelt sich um 5 V- tolerante I/O Pins.

Die Schnittstelle arbeitet mit 3.3 V TTL Pegel. Bitte Datenblatt des STM32L431KCU6 berücksichtigen.

Energieversorgung

Maximale Stromaufnahme 26 mA, maximale Leistungsaufnahme 100 mW.

HINWEIS

► Versorgung: 3.5 V ... 5.5 V

Spannungsfestigkeit

Das Bezugspotential (GND) ist mit dem Gehäuse und dem Erdanschluss (siehe Produktaufbau) verbunden. Es existiert keine galvanische Trennung zwischen den Versorgungskreisen, der Kommunikationsschnittstelle und GND.

Zertifikate und Zulassungen

CE-Kennzeichung

Der Dichtesensor erfüllt die gesetzlichen Anforderungen der EG-Richtlinien. Die TrueDyne Sensors AG bestätigt die erfolgreiche Prüfung des Dichtesensors mit der Anbringung des CE-Zeichens.

Das Produkt entspricht je nach Version den folgenden Richtlinien:

		DLO-C3
LVD	2014/35/EU(L96/357)	~
EMC	Siehe Umgebungsbedinungen	
RoHS	2011/65/EU(L174/88)	~

Die folgenden Standards werden erfüllt:

	DLO-C3
EN 61010-1: 2010	~
EN 61326-1: 2013	~
EN 61326-2-3: 2013	~
EN 50581: 2012	~

Rechtliche Einschränkungen

Industriebereiche

Der Sensor darf aus rechtlichen Gründen in der USA in den folgenden Industriebereichen nicht eingesetzt werden:

- Militärwesen (Jegliche Applikationen im militärischen Bereich einschliesslich Flugzeugen, Fahrzeugen, oder militärische Bauten. Davon ausgenommen ist die Kraftstoffförderung und Kraftstoffabgabe bei Betankung am Boden)
- Luft- und Raumfahrt (Applikationen in Flugobjekten jeglicher Art. Davon ausgenommen ist die Kraftstoffförderung und Kraftstoffabgabe bei Betankung am Boden)
- Brennstoffzellen (Einsatz in stationären oder mobilen Brennstoffzellen)
- Medizinprodukte (Gegenstände oder Stoffe, die zu medizinischen Zwecken für Menschen verwendet werden – nicht betroffen ist die Arztneimittelindustrie)

Modbus

Standardeinstellungen:

Startaarden Stenarigen.		
Baud rate	19200 BAUD	
Data bits	8	
Parity	Even	
Byte order	1-0-3-2	
Stop bits	1 bit	
Modbus address	247	
FlowControl	Keine (0)	
Transmission type	Modbus RTU (Protocol)	
Temperature unit	°C	
Pressure unit	bar abs	
Density unit	kg/m³	
Pressure value	1.01325 [bar]	

Folgende Modbus RTU Funktionen werden unterstützt:

Code	Name	Beschreibung
0x03	Read Holding Registers	Lesen eines fortlaufenden Holding Register Blocks
0x04	Read Input Registers	Lesen eines oder mehrerer aufeinan- derfolgender Register

0x06	Write Single Register	Schreiben eines einzelnen Registers
0x10	Write Multiple Registers	Schreiben mehrerer aufeinanderfolgender Register

HINWEIS

Folgende RTU Funktionen werden nicht unterstützt

•	0x02	Read Discrete Inputs
\blacktriangleright	0x07	Read Exception Status
•	0x08	Diagnostics
\blacktriangleright	0x0B	Get Comm Event Counter
	0x0C	Get Comm Event Log

Bei der Adressierung der Geräte ist unbedingt darauf zu achten, dass es nicht zwei Geräte mit der gleichen Adresse gibt. In einem solchen Fall kann es zu einem abnormalen Verhalten des gesamten seriellen Busses kommen, da der Master dann nicht mehr in der Lage ist mit allen vorhandenen Slaves auf dem Bus zu kommunizieren.

Gegenüber dem "Modbus over serial line V1.02" Protokol bestehen foldende Differenzen

- ▶ 3.6 Cables Die Kabellitzen sind nicht zu einander verdrillt
- 3.7 Visual Diagnostics Es gibt keine LED-Anzeige auf dem Sensor
- ► Eine Leitungspolarisierung "Line Polarization" ist für den Sensor nicht notwendig und auch nicht vorgesehen.

Es werden min. 32 Sensoren im Bussystem unterstützt.

Modbus Register Informationen

Info

Um den Maintenance Zugriff freizuschalten, muss folgender access code in Register 2176 (Parameter: Enter access code) geschrieben werden: 8646 (UINT16).

Name	Adresse	Datentyp	Auswahl/Eingabe	Operator	Mainte- nance
PIN (Produkt Identi- fikationsnummer)	110 117	STRING16		r	r
Serial number	101 107	STRING14		r	r
Firmware version	7276 7279	STRING8		r	r
Build number	109	UINT16		r	r
Device name	7262 7269	STRING16		r	r
Device tag	4900 4907	STRING16		r	r
Access level	2177	UINT16	0: Operator 1: Maintenance 2: Service (nur TrueDyne)	r	r
Start up counter	118 119	UINT32		r	r

SW option 2794 U	0: Density 1: Viscosity 2: Concentration & Density 3: Concentration & viscosity 4: Viscosity compensated density 5: Concentration & viscosity compensated density	r	r

Config

Modbus

Name	Adresse	Datentyp	Auswahl/ Eingabe	Operator	Mainte- nance
Modbus address	4909	UINT16	1247	r	r/w
Baud rate	4911	UINT16	3: 9600 4: 19200 5: 38400 6: 57600 7: 115200	r	r/w
Parity	4913	UINT16	O: None / 2 stop bits 1: Even / 1 stop bit 2: Odd / 1 stop bit 3: None / 1 stop bit	r	r/w

r = lesen (read) / w = schreiben (write) / Modbus-Register beziehen sich auf den Startwert 0

Byte order	4914	UINT16	0: 0-1-2-3 1: 3-2-1-0 2: 2-3-0-1 3: 1-0-3-2	r	r/w
------------	------	--------	--	---	-----

Device

Name	Adresse	Datentyp	Auswahl/ Eingabe	Operator	Mainte- nance
Restart device	6816	UINT16	0: False 1: True	r/w	r/w
Enter device tag	4900 4907	STRING16	Frei wählbar	r	r/w
Enter access code	2176	UINT16	065535 Für Maintenance 8646	r/w	r/w
Set access level	2179	UINT16	0: Operator 1: Maintenance 2: Service (nur TrueDyne)	r	r/w
Reset device	201	UINT16	0: Off 1: Reset to SW-defaults	r	r/w

Sensor

Name	Adresse	Datentyp	Auswahl/ Eingabe	Operator	Mainte- nance
Pressure compensation mode	5183	UINT16	0: Off (internal pressure = 1.01325 bar) 1: Fixed Value 2: External Value	r	r/w
Fixed pressure value	5184 5185	FLOAT32		r	r/w

External pressure	2439	FLOAT32		
value	2440		r	r/w

HINWEIS

- ▶ Zur Druckkompensation kann der Druck als fixer Parameter geschrieben werden. Standardmässig liegt der Druckwert bei 1.01325 bar absolut.
- ▶ Der Dichtesensor beinhaltet keinen Drucksensor. Es besteht jedoch die Möglichkeit, den extern gemessenen Druck in den Dichtesensor zu schreiben (siehe Sonderdokumentation für Gasmessung).
- ▶ Für häufiges Schreiben des Druckwerts bitte die "Pressure compensation mode" auf "External value" stellen und den Parameter "External pressure value" verwenden. Dieser Wert wird nicht ins EEPROM gespeichert. Häufiges Schreiben des Parameters "Fixed pressure value" kann zur Speicherverletzung im EEPROM führen.

Pressure unit	2129	UINT16	0: bar abs 1: bar gauge 2: psi abs 3: psi gauge 4: kPa abs 5: kPa gauge	r	r/w
Density unit	2106	UINT16	0: g/cm ³ 1: g/cc 2: kg/l 3: kg/m ³ 4: lb/ft ³ 5: lb/gal 6: SG liquid 7: SG gas	r	r/w

HINWEIS

▶ Specific gravity (SG Liquid) wird mit der aktuellen Temperatur (T) bezogen auf Wasser berrechnet, SG Gas im Verhältnis zu Luft.

$$SG = \frac{\rho_{\text{Medium}}(T)}{\rho_{\text{Wasser}}(T)}$$

$$SG = \frac{\rho(T)}{\rho_{Luft}(T)}$$

r = lesen (read) / w = schreiben (write) / Modbus-Register beziehen sich auf den Startwert 0

Temperature unit	2108	UINT16	0: °C 1: K 2: °F 3: °R	r	r/w
² Dynamic viscosity unit	2110	UINT16	0: cP 1: P 2: Pa s 3: mPa s	r	r/w
² Kinematic viscosity unit	2111	UINT16	0: m²/s 1: mm²/s 2: cSt 3: St	r	r/w
Enter density single point	205 206	FLOAT32	Enter density of the known media to perform a single point adjustment	r	r/w
¹ Set density single point adjustment (using a predefined media)	2510	UINT16	0: Off 1: Water 2: Air 3: Hydrogen 4: Nitrogen 5: Methane 6: CO ₂ 7: Argon	r	r/w
Enter density offset	5528 5529	FLOAT32	Manually enter density offset	r	r/w
Reset density offset	207	UINT16	0: Off 1: Reset	r	r/w
² Enter viscosity single point	208 209	FLOAT32	Enter viscosity of the known media to perform a single point adjustment	r	r/w

² Set viscosity single point adjustment (using a predefined media)	2511	UINT16	0: Off 1: Water 2: Ethanol 3: Isopropanol	r	r/w
² Enter viscosity offset	5530 5531	FLOAT32	Manually enter viscosity offset	r	r/w
² Reset viscosity offset	210	UINT16	0: Off 1: Reset	r	r/w

MinMaxValues

Name	Adresse	Datentyp	Auswahl/Eingabe	Operator	Mainte- nance
Density min	2600 2601	FLOAT32		r	r/w
Density max	2604 2605	FLOAT32		r	r/w
Temperature min	2608 2609	FLOAT32		r	r/w
Temperature max	2612 2613	FLOAT32		r	r/w
Pressure min	2616 2617	FLOAT32		r	r/w
Pressure max	2620 2621	FLOAT32		r	r/w
Concentration min	2624 2625	FLOAT32		r	r/w
Concentration max	2628 2629	FLOAT32		r	r/w

r = lesen (read) / w = schreiben (write) / Modbus-Register beziehen sich auf den Startwert 0

² Viscosity min	2632 2633	FLOAT32	r	r/w
² Viscosity max	2636 2637	FLOAT32	r	r/w

HINWEIS

- ▶ ¹Für Abgleiche mit Gasen: siehe Sonderdokumentation für Gase.
- ▶ ²Optional: siehe Produkt Viskositätssensor VLO-C3

Concentration

Name	Adresse	Datentyp	Auswahl/ Eingabe	Operator	Mainte- nance
Concentration model liquid Für Gas-Konzentrationsmodelle siehe "Sonderdoku Dichtesensor DLO-M2 DLO-M2_ex für Gase".	26491	UINT16	0: Off 1: User coeffs 2: Fructose in water 3: Glucose in water 4: Sucrose in water 5: Invert sugar in water 6: Hydrogen peroxide in water 7: Ethanol in water (OIML) 8: Methanol in water 9: Ethyleneglycol in water 10: HFCS42 11: HFCS55 12: HFCS90 13: Sodium chloride in water 14: Total dissolved solids in water 15: Butane in Propane	r	r/w

Concentration unit	2438	UINT16	0: Reserved 1: °Brix 2: °Balling 3: Reserved 4: Reserved 5: %Vol@20°C 6: °Plato 7: Reserved 8: %ABV@20°C 9: %mass 10: mg/l 11: Reserved 12: User conc. 13: %mol 14: mol/l@20°C	r	r/w
Custom concentration model name	2584 2588	STRING10	Bezeichnung des kundenspezifischen Konzentrationsmodells.	r	r/w

HINWEIS

- ► Gewünschte Flüssig- und Gas-Konzentrationsmodelle können bei der Bestellung angegeben werden.
- ► Auf Anfrage können kundenspezifische Konzentrationmodelle durch TrueDyne parametriert werden.

Process Variable

Name	Adresse	Datentyp	Auswahl/ Eingabe	Operator	Mainte- nance
Density	2012 2013	FLOAT32		r	r
² Viscosity compensated density	2030 2031	FLOAT32		r	r

r = lesen (read) / w = schreiben (write) / Modbus-Register beziehen sich auf den Startwert 0

2016 2017	FLOAT32	r	r
2088 2089	FLOAT32	r	r
2018 2019	FLOAT32	r	r
20822083	FLOAT32	r	r
2597 2598	FLOAT32	r	r
	2017 2088 2089 2018 2019 2082 2083 2597	2017 2088 FLOAT322089 2018 FLOAT322019 2082 FLOAT322083 2597 FLOAT32	2017 r 2088 FLOAT32 r 2018 FLOAT32 r 2018 FLOAT32 r 2082 FLOAT32 r 2082 FLOAT32 r

Status

Name	Adresse	Datentyp	Auswahl/ Eingabe	Operator	Mainte- nance
ControlState	2650	UINT16	0: Error 1: Unstable 2: Disabled 4: Running 5: Locked 6: Emergency Shutoff	r	r
Diagnostics	8000	UINT16 ENUM	0: OK 1: Unknown Error 2: HEAP Error 3: Storage Error	r	r
Error Code	8003	UINT16		r	r
Event 1	8004 8011	STRING16		r	r
Event 2	8012 8019	STRING16		r	r

Event 3	8020 8027	STRING16	r	r
Event 4	8028 8043	STRING16	r	r
Event 5	8044 8051	STRING16	r	r
Event 6	8052 8059	STRING16	r	r
Event 7	8060 8067	STRING16	r	r
Event 8	8068 8075	STRING16	r	r
Event 9	8076 8083	STRING16	r	r
Event 10	8084 8091	STRING16	r	r

HINWEIS

- ▶ ²Nur verfügbar bei Viskositätssensor VLO-C3
- ► Control State: Der Zustand des Sensors wird kontinuierlich intern überwacht. Im Normalbetrieb schwingt das Messsystem, dann lautet der Zustand "Locked". Im Zustand "Running" wird versucht diesen Normalbetrieb zu erreichen.
- ▶ Die Eventliste (Event 1 Event 10) beschreibt einen internen Ringbuffer, wobei das neuste Event immer dem "Event 1" und das älteste Event dem "Event 10" zugeordnet wird.

Diese Event-Meldungen werden als "String" ausgegeben und in "Informations-Meldungen" (I) und "Error-Meldungen" (E) kategorisiert. Zwei Meldungen werden als Beispiel angeführt:

- ► I-01 Start 03: Information zum drittes Aufstarten des Sensors.
- ► E-02 Storage: Error 02, Speicherfehler.

Bei Error-Meldungen kontaktieren Sie bitte den Kundenservice der TrueDyne Sensors AG.

r = lesen (read) / w = schreiben (write) / Modbus-Register beziehen sich auf den Startwert 0

Downloadbereich

Auf unserer Internetseite www.truedyne.com finden Sie dieses Dokument und weitere nützliche Dokumente in unserem Downloadbereich.

Dokumente und Files

Produktinformationen

- Datenblatt
- Merkblatt
- STEP-Datei
- Kalibrierungszertifikat (Option)

Konformitätserklärungen

- CE-Kennzeichnung EU-Konformitätserklärung
- RoHS III EU-Konformitätserklärung

Trainings

Grundlagentraining Dichtemessung

https://www.truedyne.com/dichtesensoren_fuer_fluessigkeiten_und_gase/fluessigkeiten-dlo-c3/download-dlo-c3/

TrueDyne Sensors AG 18

Webseite

Sind Sie auf der Suche nach weiteren innovativen Sensoren für Dichte und Viskosität? Besuchen Sie unsere Internetseite www.truedynce.com und erfahren Sie mehr über unser aktuelles Produktportfolio

Produktportfolio

Sensoren zur Messung von Flüssigkeiten

zum Beispiel:

- DLO-M2 Dichtesensor
- VLO-M2 Viskositäts- und Dichtesensor
- FLT-M1 Durchflusssensor

Sensoren zur Messung von Gasen

- DGF-I1 Dichtesensor
- Nanomass Dichtesensor

www.truedyne.com

TrueDyne Sensors AG 19

